Source code for traits.trait_handlers

# (C) Copyright 2005-2023 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!

"""
Defines a standard set of TraitHandler subclasses.

A trait handler mediates the assignment of values to object traits. It
verifies (via its validate() method) that a specified value is consistent
with the object trait, and generates a TraitError exception if it is not
consistent.
"""

from importlib import import_module
import sys
from types import FunctionType, MethodType

from .constants import ValidateTrait
from .trait_base import (
    SequenceTypes,
    TypeTypes,
    class_of,
)
from .trait_base import RangeTypes  # noqa: F401, used by TraitsUI
from .trait_errors import TraitError
from .trait_handler import TraitHandler

# Constants

CallableTypes = (FunctionType, MethodType)

# Mapping of coercable types.
CoercableTypes = {
    float: (ValidateTrait.coerce, float, int),
    complex: (ValidateTrait.coerce, complex, float, int),
}

_WARNING_FORMAT_STR = ("'{handler}' trait handler has been deprecated. "
                       "Use {replacement} instead.")


# Private functions

[docs]def _undefined_get(object, name): raise TraitError( ( "The '%s' trait of %s instance is a property that has " "no 'get' or 'set' method" ) % (name, class_of(object)) )
[docs]def _undefined_set(object, name, value): _undefined_get(object, name)
[docs]class TraitCoerceType(TraitHandler): """Ensures that a value assigned to a trait attribute is of a specified Python type, or can be coerced to the specified type. TraitCoerceType is the underlying handler for the predefined traits and factories for Python simple types. The TraitCoerceType class is also an example of a parametrized type, because the single TraitCoerceType class allows creating instances that check for totally different sets of values. For example:: class Person(HasTraits): name = Trait('', TraitCoerceType('')) weight = Trait(0.0, TraitCoerceType(float)) In this example, the **name** attribute must be of type ``str`` (string), while the **weight** attribute must be of type ``float``, although both are based on instances of the TraitCoerceType class. Note that this example is essentially the same as writing:: class Person(HasTraits): name = Trait('') weight = Trait(0.0) This simpler form is automatically changed by the Trait() function into the first form, based on TraitCoerceType instances, when the trait attributes are defined. For attributes based on TraitCoerceType instances, if a value that is assigned is not of the type defined for the trait, a TraitError exception is raised. However, in certain cases, if the value can be coerced to the required type, then the coerced value is assigned to the attribute. Only *widening* coercions are allowed, to avoid any possible loss of precision. The following table lists the allowed coercions. ============ ================= Trait Type Coercible Types ============ ================= complex float, int float int ============ ================= Parameters ---------- aType : type or object Either a Python type or a Python value. If this is an object, it is mapped to its corresponding type. For example, the string 'cat' is automatically mapped to ``str``. Attributes ---------- aType : type A Python type to coerce values to. """ def __init__(self, aType): if not isinstance(aType, type): aType = type(aType) self.aType = aType try: self.fast_validate = CoercableTypes[aType] except: self.fast_validate = (ValidateTrait.coerce, aType)
[docs] def validate(self, object, name, value): fv = self.fast_validate tv = type(value) # If the value is already the desired type, then return it: if tv is fv[1]: return value # Else see if it is one of the coercable types: for typei in fv[2:]: if tv is typei: # Return the coerced value: return fv[1](value) # Otherwise, raise an exception: self.error(object, name, value)
[docs] def info(self): return "a value of %s" % str(self.aType)[1:-1]
[docs] def get_editor(self, trait): # Make the special case of a 'bool' type use the boolean editor: if self.aType is bool: if self.editor is None: from traitsui.api import BooleanEditor self.editor = BooleanEditor() return self.editor # Otherwise, map all other types to a text editor: auto_set = trait.auto_set if auto_set is None: auto_set = True from traitsui.api import TextEditor return TextEditor( auto_set=auto_set, enter_set=trait.enter_set or False, evaluate=self.fast_validate[1], )
[docs]class TraitCastType(TraitCoerceType): """Ensures that a value assigned to a trait attribute is of a specified Python type, or can be cast to the specified type. This class is similar to TraitCoerceType, but uses casting rather than coercion. Values are cast by calling the type with the value to be assigned as an argument. When casting is performed, the result of the cast is the value assigned to the trait attribute. Any trait that uses a TraitCastType instance in its definition ensures that its value is of the type associated with the TraitCastType instance. For example:: class Person(HasTraits): name = Trait('', TraitCastType('')) weight = Trait(0.0, TraitCastType(float)) In this example, the **name** trait must be of type ``str`` (string), while the **weight** trait must be of type ``float``. Note that this example is essentially the same as writing:: class Person(HasTraits): name = CStr weight = CFloat To understand the difference between TraitCoerceType and TraitCastType (and also between Float and CFloat), consider the following example:: >>> class Person(HasTraits): ... weight = Float ... cweight = CFloat ... >>> bill = Person() >>> bill.weight = 180 # OK, coerced to 180.0 >>> bill.cweight = 180 # OK, cast to 180.0 >>> bill.weight = '180' # Error, invalid coercion >>> bill.cweight = '180' # OK, cast to float('180') Parameters ---------- aType : type Either a Python type or a Python value. If this is an object, it is mapped to its corresponding type. For example, the string 'cat' is automatically mapped to ``str``. Attributes ---------- aType : type A Python type to cast values to. """ def __init__(self, aType): if not isinstance(aType, type): aType = type(aType) self.aType = aType self.fast_validate = (ValidateTrait.cast, aType)
[docs] def validate(self, object, name, value): # If the value is already the desired type, then return it: if type(value) is self.aType: return value # Else try to cast it to the specified type: try: return self.aType(value) except: self.error(object, name, value)
[docs]class TraitInstance(TraitHandler): """Ensures that trait attribute values belong to a specified Python type. Any trait that uses a TraitInstance handler ensures that its values belong to the specified type or class (or one of its subclasses). For example:: class Employee(HasTraits): manager = Trait(None, TraitInstance(Employee, True)) This example defines a class Employee, which has a **manager** trait attribute, which accepts either None or an instance of Employee as its value. TraitInstance ensures that assigned values are exactly of the type specified (i.e., no coercion is performed). Parameters ---------- aClass : type, object or str A Python type or a string that identifies the type, or an object. If this is an object, it is mapped to the class it is an instance of. If this is a str, it is either the name of a class in the module identified by the module parameter, or an identifier of the form "*module_name*[.*module_name*....].*class_name*". allow_none : bool Flag indicating whether None is accepted as a valid value. module : str The name of the module that the class belongs to. This is ignored if the type is provided directly, or the str value is an identifier with '.'s in it. Attributes ---------- aClass : type or str A Python type, or a string which identifies the type. If this is a str, it is either the name of a class in the module identified by the module attribute, or an identifier of the form "*module_name*[.*module_name*....].*class_name*". A string value will be replaced by the actual type object the first time the trait is used to validate an object. module : str The name of the module that the class belongs to. This is ignored if the type is provided directly, or the str value is an identifier with '.'s in it. """ def __init__(self, aClass, allow_none=True, module=""): self._allow_none = allow_none self.module = module if isinstance(aClass, str): self.aClass = aClass else: if not isinstance(aClass, type): aClass = aClass.__class__ self.aClass = aClass self.set_fast_validate()
[docs] def allow_none(self): """ Whether or not None is permitted as a valid value. Returns ------- bool Whether or not None is a valid value. """ self._allow_none = True if hasattr(self, "fast_validate"): self.set_fast_validate()
def set_fast_validate(self): fast_validate = [ValidateTrait.instance, self.aClass] if self._allow_none: fast_validate = [ValidateTrait.instance, None, self.aClass] if self.aClass in TypeTypes: fast_validate[0] = ValidateTrait.type self.fast_validate = tuple(fast_validate)
[docs] def validate(self, object, name, value): if value is None: if self._allow_none: return value else: self.error(object, name, value) if isinstance(self.aClass, str): self.resolve_class(object, name, value) if isinstance(value, self.aClass): return value self.error(object, name, value)
[docs] def info(self): aClass = self.aClass if type(aClass) is not str: aClass = aClass.__name__ result = class_of(aClass) if self._allow_none: return result + " or None" return result
def resolve_class(self, object, name, value): aClass = self.validate_class(self.find_class(self.aClass)) if aClass is None: self.error(object, name, value) self.aClass = aClass # fixme: The following is quite ugly, because it wants to try and fix # the trait referencing this handler to use the 'fast path' now that # the actual class has been resolved. The problem is finding the trait, # especially in the case of List(Instance('foo')), where the # object.base_trait(...) value is the List trait, not the Instance # trait, so we need to check for this and pull out the List # 'item_trait'. Obviously this does not extend well to other traits # containing nested trait references (Dict?)... self.set_fast_validate() trait = object.base_trait(name) handler = trait.handler if (handler is not self) and hasattr(handler, "item_trait"): trait = handler.item_trait trait.set_validate(self.fast_validate) def find_class(self, klass): module = self.module col = klass.rfind(".") if col >= 0: module = klass[:col] klass = klass[col + 1:] theClass = getattr(sys.modules.get(module), klass, None) if (theClass is None) and (col >= 0): try: mod = import_module(module) theClass = getattr(mod, klass, None) except Exception: pass return theClass def validate_class(self, aClass): return aClass def create_default_value(self, *args, **kw): aClass = args[0] if isinstance(aClass, str): aClass = self.validate_class(self.find_class(aClass)) if aClass is None: raise TraitError("Unable to locate class: " + args[0]) return aClass(*args[1:], **kw)
[docs] def get_editor(self, trait): if self.editor is None: from traitsui.api import InstanceEditor self.editor = InstanceEditor( label=trait.label or "", view=trait.view or "", kind=trait.kind or "live", ) return self.editor
[docs]class TraitFunction(TraitHandler): """Ensures that assigned trait attribute values are acceptable to a specified validator function. TraitFunction is the underlying handler for the predefined trait **Function**, and for the use of function references as arguments to the Trait() function. The signature of the function must be of the form *function*(*object*, *name*, *value*). The function must verify that *value* is a legal value for the *name* trait attribute of *object*. If it is, the value returned by the function is the actual value assigned to the trait attribute. If it is not, the function must raise a TraitError exception. Parameters ---------- aFunc : function A function to validate trait attribute values. Attributes ---------- aFunc : function A function to validate trait attribute values. """ def __init__(self, aFunc): if not isinstance(aFunc, CallableTypes): raise TraitError("Argument must be callable.") self.aFunc = aFunc self.fast_validate = (ValidateTrait.function, aFunc)
[docs] def validate(self, object, name, value): try: return self.aFunc(object, name, value) except TraitError: self.error(object, name, value)
[docs] def info(self): try: return self.aFunc.info except: if self.aFunc.__doc__: return self.aFunc.__doc__ return "a legal value"
[docs]class TraitEnum(TraitHandler): """ Ensures that a value assigned to a trait attribute is a member of a specified list of values. TraitEnum is the underlying handler for the forms of the Trait() function that take a list of possible values The list of legal values can be provided as a list or tuple of values. That is, ``TraitEnum([1, 2, 3])``, ``TraitEnum((1, 2, 3))`` and ``TraitEnum(1, 2, 3)`` are equivalent. For example:: class Flower(HasTraits): color = Trait('white', TraitEnum(['white', 'yellow', 'red'])) kind = Trait('annual', TraitEnum('annual', 'perennial')) This example defines a Flower class, which has a **color** trait attribute, which can have as its value, one of the three strings, 'white', 'yellow', or 'red', and a **kind** trait attribute, which can have as its value, either of the strings 'annual' or 'perennial'. This is equivalent to the following class definition:: class Flower(HasTraits): color = Trait(['white', 'yellow', 'red']) kind = Trait('annual', 'perennial') The Trait() function automatically maps traits of the form shown in this example to the form shown in the preceding example whenever it encounters them in a trait definition. Parameters ---------- *values Either all legal values for the enumeration, or a single list or tuple of the legal values. Attributes ---------- values : tuple Enumeration of all legal values for a trait. """ def __init__(self, *values): if (len(values) == 1) and (type(values[0]) in SequenceTypes): values = values[0] self.values = tuple(values) self.fast_validate = (ValidateTrait.enum, self.values)
[docs] def validate(self, object, name, value): if value in self.values: return value self.error(object, name, value)
[docs] def info(self): return " or ".join([repr(x) for x in self.values])
[docs] def get_editor(self, trait): from traitsui.api import EnumEditor return EnumEditor( values=self, cols=trait.cols or 3, evaluate=trait.evaluate, mode=trait.mode or "radio", )
[docs]class TraitMap(TraitHandler): """ Checks that the value assigned to a trait attribute is a key of a specified dictionary, and also assigns the dictionary value corresponding to that key to a *shadow* attribute. A trait attribute that uses a TraitMap handler is called *mapped* trait attribute. In practice, this means that the resulting object actually contains two attributes: one whose value is a key of the TraitMap dictionary, and the other whose value is the corresponding value of the TraitMap dictionary. The name of the shadow attribute is simply the base attribute name with an underscore ('_') appended. Mapped trait attributes can be used to allow a variety of user-friendly input values to be mapped to a set of internal, program-friendly values. Example ------- The following example defines a ``Person`` class:: >>> class Person(HasTraits): ... married = Trait('yes', TraitMap({'yes': 1, 'no': 0}) ... >>> bob = Person() >>> print bob.married yes >>> print bob.married_ 1 In this example, the default value of the ``married`` attribute of the Person class is 'yes'. Because this attribute is defined using TraitMap, instances of Person have another attribute, ``married_``, whose default value is 1, the dictionary value corresponding to the key 'yes'. Parameters ---------- map : dict A dictionary whose keys are valid values for the trait attribute, and whose corresponding values are the values for the shadow trait attribute. Attributes ---------- map : dict A dictionary whose keys are valid values for the trait attribute, and whose corresponding values are the values for the shadow trait attribute. """ is_mapped = True def __init__(self, map): self.map = map self.fast_validate = (ValidateTrait.map, map)
[docs] def validate(self, object, name, value): try: if value in self.map: return value except: pass self.error(object, name, value)
[docs] def mapped_value(self, value): """ Get the mapped value for a value. """ return self.map[value]
def post_setattr(self, object, name, value): try: setattr(object, name + "_", self.mapped_value(value)) except: # We don't need a fancy error message, because this exception # should always be caught by a TraitCompound handler: raise TraitError("Unmappable")
[docs] def info(self): keys = sorted(repr(x) for x in self.map.keys()) return " or ".join(keys)
[docs] def get_editor(self, trait): from traitsui.api import EnumEditor return EnumEditor(values=self, cols=trait.cols or 3)
[docs]class TraitCompound(TraitHandler): """ Provides a logical-OR combination of other trait handlers. This class provides a means of creating complex trait definitions by combining several simpler trait definitions. TraitCompound is the underlying handler for the general forms of the Trait() function. A value is a valid value for a trait attribute based on a TraitCompound instance if the value is valid for at least one of the TraitHandler or trait objects supplied to the constructor. In addition, if at least one of the TraitHandler or trait objects is mapped (e.g., based on a TraitMap instance), then the TraitCompound is also mapped. In this case, any non-mapped traits or trait handlers use identity mapping. Parameters ---------- *handlers Either all TraitHandlers or trait objects to be combined, or a single list or tuple of TraitHandlers or trait objects. Attributes ---------- handlers : list or tuple A list or tuple of TraitHandler or trait objects to be combined. """ def __init__(self, *handlers): if (len(handlers) == 1) and (type(handlers[0]) in SequenceTypes): handlers = handlers[0] self.handlers = handlers self.set_validate() def set_validate(self): self.is_mapped = False self.has_items = False self.reversable = True post_setattrs = [] mapped_handlers = [] validates = [] fast_validates = [] slow_validates = [] for handler in self.handlers: fv = getattr(handler, "fast_validate", None) if fv is not None: validates.append(handler.validate) if fv[0] == ValidateTrait.complex: # If this is a nested complex fast validator, expand its # contents and adds its list to our list: fast_validates.extend(fv[1]) else: # Else just add the entire validator to the list: fast_validates.append(fv) else: slow_validates.append(handler.validate) post_setattr = getattr(handler, "post_setattr", None) if post_setattr is not None: post_setattrs.append(post_setattr) if handler.is_mapped: self.is_mapped = True mapped_handlers.append(handler) else: self.reversable = False self.validates = validates self.slow_validates = slow_validates if self.is_mapped: self.mapped_handlers = mapped_handlers elif hasattr(self, "mapped_handlers"): del self.mapped_handlers # If there are any fast validators, then we create a 'complex' fast # validator that composites them: if len(fast_validates) > 0: # If there are any 'slow' validators, add a special handler at # the end of the fast validator list to handle them: if len(slow_validates) > 0: fast_validates.append((ValidateTrait.slow, self)) # Create the 'complex' fast validator: self.fast_validate = (ValidateTrait.complex, tuple(fast_validates)) elif hasattr(self, "fast_validate"): del self.fast_validate if len(post_setattrs) > 0: self.post_setattrs = post_setattrs self.post_setattr = self._post_setattr elif hasattr(self, "post_setattr"): del self.post_setattr
[docs] def validate(self, object, name, value): for validate in self.validates: try: return validate(object, name, value) except TraitError: pass return self.slow_validate(object, name, value)
def slow_validate(self, object, name, value): for validate in self.slow_validates: try: return validate(object, name, value) except TraitError: pass self.error(object, name, value)
[docs] def full_info(self, object, name, value): return " or ".join( [x.full_info(object, name, value) for x in self.handlers] )
[docs] def info(self): return " or ".join([x.info() for x in self.handlers])
def mapped_value(self, value): for handler in self.mapped_handlers: try: return handler.mapped_value(value) except: pass return value def _post_setattr(self, object, name, value): for post_setattr in self.post_setattrs: try: post_setattr(object, name, value) return except TraitError: pass setattr(object, name + "_", value)
[docs] def get_editor(self, trait): from traitsui.api import TextEditor, CompoundEditor the_editors = [x.get_editor(trait) for x in self.handlers] text_editor = TextEditor() count = 0 editors = [] for editor in the_editors: if isinstance(text_editor, editor.__class__): count += 1 if count > 1: continue editors.append(editor) return CompoundEditor(editors=editors)